Bridging Family * Business * Recreation # 2021 CONSUMER CONFIDENCE REPORT ## Spanish (Espanol) Este informe contiene informacion muy importante sobre la calidad de su agua beber. Traduscalo o hable con alguien que lo entienda bien. # Is my water safe? We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies. As we informed you at the time, our water temporarily exceeded drinking water standards. (For more information see the section labeled Violations at the end of the report.) # Do I need to take special precautions? Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791). Where does my water come from? Rio Hondo drinking water customers receive their water from surface water sources. Water is pumped from the Rio Grande River and transferred to the raw water reservoirs by the Cameron County Irrigation District No. 2 (CCID2), where it is pumped to the Water Treatment Plant for treatment. ## Source water assessment and its availability The Texas Commission on Environmental Quality (TCEQ) completed an assessment of our source water and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for our water system are based on this susceptibility and previous sample data. Any detection of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts in our water system, please call (956) 748-2102. Source water assessment information is available on Texas Drinking Water Watch at http://dww.tceq.state.tx.us/DWW/. ## Why are there contaminants in my drinking water? Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity: microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health. # How can I get involved? The public is welcome to attend the Rio Hondo City Council meetings held each second and fourth Tuesday at 121 N. Arroyo Blvd in Rio Hondo. For specific questions related to this report, please call (956) 748-2102 or email water2@riohondo.us. # **Description of Water Treatment Process** Your water is treated in a "treatment train" (a series of processes applied in a sequence) that includes coagulation, flocculation, sedimentation, filtration, and disinfection. Coagulation removes dirt and other particles suspended in the source water by adding chemicals (coagulants) to form tiny sticky particles called "floc," which attract the dirt particles. Flocculation (the formation of larger flocs from smaller flocs) is achieved using gentle, constant mixing. The heavy particles settle naturally out of the water in a sedimentation basin. The clear water then moves to the filtration process where the water passes through sand, gravel, charcoal or other filters that remove even smaller particles. A small amount of chlorine or other disinfection method is used to kill bacteria and other microorganisms (viruses, cysts, etc.) that may be in the water before water is stored and distributed to homes and businesses in the community. # **Water Conservation Tips** Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference - try one today and soon it will become second nature. - Take short showers a 5-minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath. - Shut off water while brushing your teeth, washing your hair, and shaving and save up to 500 gallons a month. - Use a water-efficient showerhead. They are inexpensive, easy to install, and can save you up to 750 gallons a month. - Run your clothes washer and dishwasher only when they are full. You can save up to 1,000 gallons a month. - Water plants only when necessary. - Fix leaky toilets and faucets. Faucet washers are inexpensive and take only a few minutes to replace. To check your toilet for a leak, place a few drops of food coloring in the tank and wait. If it seeps into the toilet bowl without flushing, you have a leak. Fixing it or replacing it with a new, more efficient model can save up to 1,000 gallons a month. - Adjust sprinklers so only your lawn is watered. Apply water only as fast as the soil can absorb it and during the cooler parts of the day to reduce evaporation. - Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family effort to reduce next month's water bill! - Visit <u>www.epa.gov/watersense</u> for more information. ## **Source Water Protection Tips** Protection of drinking water is everyone's responsibility. You can help protect your community's drinking water source in several ways: - Eliminate excess use of lawn and garden fertilizers and pesticides they contain hazardous chemicals that can reach your drinking water source. - Pick up after your pets. - If you have your own septic system, properly maintain your system to reduce leaching to water sources or consider connecting to a public water system. - Dispose of chemicals properly; take used motor oil to a recycling center. - Volunteer in your community. Find a watershed or wellhead protection organization in your community and volunteer to help. If there are no active groups, consider starting one. Use EPA's Adopt Your Watershed to locate groups in your community, or visit the Watershed Information Network's How to Start a Watershed Team. - Organize a storm drain stenciling project with your local government or water supplier. Stencil a message next to the street drain reminding people "Dump No Waste Drains to River" or "Protect Your Water." Produce and distribute a flyer for households to remind residents that storm drains dump directly into your local water body. CITY OF RIO HONDO TX 310006 #### Additional Information for Lead If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. CITY OF RIO HONDO is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. ## Additional Information for Arsenic While your drinking water meets EPA's standard for arsenic, it does contain low levels of arsenic. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems. # **Water Quality Data Table** In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the number of contaminants in water provided by public water systems. The table below lists all the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table. 5 CITY OF RIO HONDO TX 310006 #### 2021 Consumer Confidence Report for Public Water System CITY OF RIO HONDO For more information regarding this report contact: Name Murl Kemmerling CITY OF RIO HONDO provides surface water from the Rio Grande River and Is located in Cameron County. Phone (956)748-2102 Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono (512) 748-2102. **Definitions and Abbreviations** The following tables contain scientific terms and measures, some of which may require explanation. Definitions and Abbreviations The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. Action Level: Regulatory compliance with some MCLs are based on running annual average of monthly samples. Avg: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our Level 1 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred Level 2 Assessment: and/or why total coliform bacteria have been found in our water system on multiple occasions. The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Maximum Contaminant Level or MCL: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. Maximum Contaminant Level Goal or MCLG: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial Maximum residual disinfectant level or MRDL: contaminants. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to Maximum residual disinfectant level goal or MRDLG: control microbial contaminants. MFL million fibers per liter (a measure of asbestos) millirems per year (a measure of radiation absorbed by the body) mrem: not applicable. na: nephelometric turbidity units (a measure of turbidity) NTU picocuries per liter (a measure of radioactivity) pCi/L This is your water quality report for January 1 to December 31, 2021 #### **Definitions and Abbreviations** ppb: micrograms per liter or parts per billion ppm: milligrams per liter or parts per million ppq parts per quadrillion, or picograms per liter (pg/L) ppt parts per trillion, or nanograms per liter (ng/L) Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water. # Information about your Drinking Water The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems. - Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health. Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office. You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791). If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. #### Information about Source Water TCEQ completed an assessment of your source water, and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for your water system is based on this susceptibility and previous sample data. Any detections of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system contact [insert water system contact][insert phone number] #### Coliform Bacteria | Maximum Contaminant
Level Goal | Total Coliform Maximum Contaminant Level | Highest No. of Positive | Fecal Coliform or E. Coli
Maximum Contaminant Level | | | Likely Source of Contamination | |-----------------------------------|--|-------------------------|--|---|---|---------------------------------------| | 0 | 1 positive monthly sample. | 1 | | 0 | N | Naturally present in the environment. | | Lead and Copper | Date Sampled | MCLG | Action Level (AL) | 90th Percentile | # Sites Over AL | Units | Violation | Likely Source of Contamination | |-----------------|--------------|------|-------------------|-----------------|-----------------|-------|-----------|--| | Copper | 09/17/2020 | 1.3 | 1.3 | 0.191 | 0 | ppm | N | Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing | | Lead | 09/17/2020 | 0 | 15 | 0.9 | 0 | ppb | N | Corrosion of household plumbing systems;
Erosion of natural deposits. | # **2021 Water Quality Test Results** | Disinfection By-Products | Collection Date | Highest Level
Detected | Range of Individual
Samples | MCLG | MCL | Units | Violation | Likely Source of Contamination | |--------------------------|-----------------|---------------------------|--------------------------------|-----------------------|-----|-------|-----------|--| | Chlorite | 2021 | 0.83 | 0.021 - 0.83 | 0.8 | 1 | ppm | N | By-product of drinking water disinfection. | | Haloacetic Acids (HAA5) | 2021 | 24 | 14.8 - 30.9 | No goal for the total | 60 | ppb | N | By-product of drinking water disinfection. | ^{*}The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year | Total Trihalomethanes (TTHM) | 2021 | 55 | 28.2 - 74 | No goal for the total | 80 | ppb | N | By-product of drinking water disinfection. | |------------------------------|------|----|-----------|-----------------------|----|-----|---|--| | | | | | l total | | | | | ^{*}The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year | Inorganic Contaminants | Collection Date | Highest Level
Detected | Range of Individual
Samples | MCLG | MCL | Units | Violation | Likely Source of Contamination | |--------------------------------|-----------------|---------------------------|--------------------------------|------|-----|-------|-----------|---| | Barium | 2021 | 0.124 | 0.124 - 0.124 | 2 | 2 | ppm | N | Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits. | | Fluoride | 2021 | 0.5 | 0.52 - 0.52 | 4 | 4.0 | ppm | N | Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories | | Nitrate [measured as Nitrogen] | 2021 | 0.13 | 0.13 - 0.13 | 10 | 10 | ppm | N | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits. | | Radioactive Contaminants | Collection Date | Highest Level
Detected | Range of Individual
Samples | MCLG | MCL | Units | Violation | Likely Source of Contamination | |--------------------------|-----------------|---------------------------|--------------------------------|------|-----|--------|-----------|---| | Beta/photon emitters | 2021 | 6.4 | 6.4 - 6.4 | 0 | 50 | pCi/L* | N | Decay of natural and man-made deposits. | | | 1 [(| | | | | | | | ^{*}EPA considers 50 pCi/L to be the level of concern for beta particles. | | | | | | | | , | 1 | |---------|------|-----|-----------|---|----|------|---|---| | Uranium | 2021 | 1.7 | 1.7 - 1.7 | 0 | 30 | ug/l | N | Erosion of natural deposits. | | | | | | | | | | | | Synthetic organic contaminants including pesticides and herbicides | Collection Date | Highest Level
Detected | Range of Individual
Samples | MCLG | MCL | Units | Violation | Likely Source of Contamination | |--|-----------------|---------------------------|--------------------------------|------|-----|-------|-----------|--| | Atrazine | 2021 | 0.13 | 0 - 0.13 | 3 | 3 | ppb | N | Runoff from herbicide used on row crops. | #### Disinfectant Residual A blank disinfectant residual table has been added to the CCR template, you will need to add data to the fields. Your data can be taken off the Disinfectant Level Quarterly Operating Reports (DLQOR). | Disinfectant Residual | Year | Average Level | Range of Levels
Detected | MRDL | MRDLG | Unit of Measure | Violation (Y/N) | Source in Drinking Water | |-----------------------|------|---------------|-----------------------------|------|-------|-----------------|-----------------|--| | | 2021 | 3.5 | 4.7 – 1.5 | 4 | 4 | | ppm | Water additive used to control microbes. | ## Turbidity | | Level Detected | Limit (Treatment
Technique) | Violation | Likely Source of Contamination | |--------------------------------|----------------|--------------------------------|-----------|--------------------------------| | Highest single measurement | 0.99 NTU | 1 NTU | N | Soil runoff. | | Lowest monthly % meeting limit | 73% | 0.3 NTU | Y | Soil runoff. | Information Statement: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration system and disinfectants. # **Total Organic Carbon** The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set, unless a TOC violation is noted in the violations section. #### Violations | Interim Enhanced SWTR | | | | |--|----------------------------|--|--| | The Interim Enhanced Surface Water Treatment F | tule improves control of n | nicrobial contaminants
er Treatment Rule. | , particularly Cryptosporidium, in systems using surface water, or ground water under the direct influence of surface water. The | | Violation Type | Violation Begin | Violation End | Violation Explanation | #### Violations | MONTHLY COMB FLTR EFFLUENT (IESWTR/LT1) | 01/01/2021 | 01/31/2021 | Turbidity levels, though relatively low, exceeded a standard for the month indicated. Turbidity (cloudiness) levels are used to measure effective filtration of drinking water. | |---|------------|------------|---| | MONTHLY COMB FLTR EFFLUENT (IESWTR/LT1) | 02/01/2021 | 02/28/2021 | Turbidity levels, though relatively low, exceeded a standard for the month indicated. Turbidity (cloudiness) levels are used to measure effective filtration of drinking water. | | MONTHLY COMB FLTR EFFLUENT (IESWTR/LT1) | 07/01/2021 | 07/31/2021 | Turbidity levels, though relatively low, exceeded a standard for the month indicated. Turbidity (cloudiness) levels are used to measure effective filtration of drinking water. | | MONTHLY COMB FLTR EFFLUENT (IESWTR/LT1) | 08/01/2021 | 08/31/2021 | Turbidity levels, though relatively low, exceeded a standard for the month indicated. Turbidity (cloudiness) levels are used to measure effective filtration of drinking water. | ## Public Notification Rule The Public Notification Rule helps to ensure that consumers will always know if there is a problem with their drinking water. These notices immediately alert consumers if there is a serious problem with their drinking water (e.g., a boil water emergency). | Violation Type | Violation Begin | Violation End | Violation Explanation | |--|-----------------|---------------|--| | PUBLIC NOTICE RULE LINKED TO VIOLATION | 08/01/2020 | 09/21/2021 | We failed to adequately notify you, our drinking water consumers, about a violation of the drinking water regulations. | | PUBLIC NOTICE RULE LINKED TO VIOLATION | 08/31/2020 | 09/21/2021 | We failed to adequately notify you, our drinking water consumers, about a violation of the drinking water regulations. | | PUBLIC NOTICE RULE LINKED TO VIOLATION | 01/31/2021 | 09/21/2021 | We failed to adequately notify you, our drinking water consumers, about a violation of the drinking water regulations. | | PUBLIC NOTICE RULE LINKED TO VIOLATION | 03/03/2021 | 09/21/2021 | We failed to adequately notify you, our drinking water consumers, about a violation of the drinking water regulations. | | PUBLIC NOTICE RULE LINKED TO VIOLATION | 03/31/2021 | 09/21/2021 | We failed to adequately notify you, our drinking water consumers, about a violation of the drinking water regulations. |